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a homologue of the oral haemal ring of sea stars and 
brittle stars. In these classes, the oral haemal ring lies 
between the ring coeloms of the perihaemal system (the 
axocoelomic and somatocoelomic perihaemal rings), and 
in holothurians, the perihaemal system is absent and the 
oral haemal ring lies between the perioral coelom and the 
water-vascular ring.

The lack of the somatocoelomic perihaemal coelom is 
important for the analysis of the structure of the radial 
complex of organs in holothurians and Eleutherozoa, in 
general. In the Introduction, we noted that the similarities 
of the radial complex (the presence of epineural canals 
above ectoneural nerves in particular) have allowed to 
unite holothurians with sea urchins and brittle stars as the 
Cryptosyringida. However, the hyponeural and epineu-
ral canals of holothurians are formed differently than in 
other Eleutherozoa and have different organization. In 
Asteroidea and Ophiuroidea, a pair of somatocoelomic 
perihaemal outgrowths accompanies the radial hyponeu-
ral nerve (Ezhova et  al. 2013, 2015). In Holothuroidea, 
the somatocoelomic perihaemal ring and its radial out-
growths do not develop at all (Ivanova-Kazas 1978; 
Malakhov and Cherkasova 1992), and the hyponeural 
nerve is accompanied with the hyponeural canal, which 
develops after the metamorphosis (Smiley 1986) in 
1-month old juveniles and appears neither in anterior, nor 
in posterior, but in the central part of the body, first in the 
mid-ventral nerve cord (Dolmatov et  al. 2016). Accord-
ing to some recent research, the hyponeural canal is not a 
coelom, but a cavity surrounded by glial cells (Mashanov 
et  al. 2013). There is no hyponeural circumoral ring in 
holothurians and the radial hyponeural canals are adja-
cent to the perioral coelomic ring but do not connect with 
it. Epineural radial canals in holothurians are formed by a 
gap in the tissue along the ectoneural nerve but not by the 
closing of the epineural folds like in brittle stars and sea 
urchins (Smiley 1986). It is possible that the epineural 

canals of holothurians appeared independently from the 
epineural canals of brittle stars and sea urchins.

Holothurians are the only group of echinoderms, which 
have circumoral tentacles. The tentacular coeloms develop 
from the left mesocoel (hydrocoel) same as the radial 
water-vascular canals (Ivanova-Kazas 1978; Smiley 1986; 
Malakhov and Cherkasova 1992). Some authors have sug-
gested that the canals of the five primary tentacles are 
homologous with the radial water-vascular canals of other 
echinoderms, and the holothuroid water-vascular canals 
are a new formation (Semon 1888; David and Mooi 1996, 
1998). Dolmatov et  al. (2016) consider that the tenta-
cles of holothurians are homologous with the ambulacral 
podia. Smiley (1986) believed that the tentacle coeloms of 
holothurians are homologous with the axocoel of the other 
echinoderms, because their coelomic lining comes from 
the axohydrocoel in the embryogenesis. He also postulated 
the homology between brachiolar podia of asteroids and 
buccal tube-feet of holothurians (Smiley 1988). However, 
Smith (1997) opposed this, stressing that the brachiolar 
podia of asteroids originates entirely from axocoel and buc-
cal tube-feet of holothurians originates exclusively from the 
hydrocoel.

Most likely, the tentacles of sea cucumbers are homol-
ogous to neither the ambulacral podia nor the brachiolar 
podia. Five tentacles are initially formed in the development 
of holothurians (Smiley 1986; Malakhov and Cherkasova 
1992). The tentacles and their coeloms are formed before 
the radial water-vascular canals and ambulacral podia (ten-
tacles of holothurians are often called “primary tentacles” 
or “primary buccal podia”—Hyman 1955; Smiley 1986). 
The tentacles are formed in the interradii (Smiley 1986; 
Malakhov and Cherkasova 1992; Dolmatov and Yushin 
1993; Mashanov and Dolmatov 2000; Dolmatov et  al. 
2016). In Leptosynapta, the five primary tentacles retain 
their positions in the interradii (Runnström 1927). In Cucu-
maria and Apostichopus, the five primary tentacles shift: 

Fig. 7   Scheme of the location of the madreporite in most echinoderms (a), in holothuroid Elasipodida and Chiridotidae (Apodida) (b), and in 
holothuroid Dendrochirotida, Aspidochirotida, Molpadida, and Synaptidae (Apodida) (c)
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two move closer to the mid-ventral water-vascular canal, 
other two—to the left dorsal water-vascular canal, and the 
last—to the right dorsal water-vascular canal (Runnström 
1927; Dolmatov et al. 2016). The studied C. laevis has 12 
tentacles, the coeloms of which are connected by tube out-
growths not with the radial water-vascular canals, but with 
the water-vascular ring. The water-vascular canal in radius 
A is not associated with the tentacles (Fig. 3d, e).

We can assume that the tentacles of sea cucumbers are 
homologous with the mesocoel tentacles of the common 
deuterostome ancestor. Coeloms of the arms of Ptero-
branchia develop from the mesocoel (Schepotieff 1909; 
John 1932). The coelom of the circumoral tentacles of 
a lancelet also develops from the second pair of coeloms 
(MacBride 1898). Echinoderms have retained only the left 
mesocoel, and thus, tentacles of holothurians are homolo-
gous to only the left half of the tentacular apparatus of 
other Deuterostomia.
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